Monowheel Balancing Robot Can’t Turn (Yet)

Self-balancing robots have become a common hobby project, and they usually require two wheels to work. [James Bruton] has managed to single wheel balancing robot by adding gyroscopic stabilization.
[James] has done other self-balancing robots, like his Sonic robot, but recently started experimenting with gyroscopic stabilization. In that project, he proposed the idea of combining the two stabilization methods to create a monowheel robot, and he followed through on that idea. The wheel is powered by a brushless motor and is stabilized conventionally around the wheel’s axis. Side to side balancing is achieved using a phenomenon known as gyroscopic precession, by tilting a pair of heavy spinning wheels. This is not to be confused with reaction wheels, which use rotational inertia for control. It appears the actuating the gyroscopes also affects the front-to-back stabilization, so at the moment the robots won’t stay on one spot. [James] plans to implement a second observation controller in software to solve this.
Another challenge with this robot is that it cannot turn at the moment. The gyroscopes are not in the correct orientation to effect rotation around the vertical axis, and changing their orientation would cause other problems. A fan, which works like a helicopter’s tail rotor is one option, and a reaction wheel on top might also work. We’re partial to the reaction wheel idea. Having a different mechanical control mechanism for each axis would make it quite an interesting robot.
Search
Hot Articles
- Wie man ein Fleischseil binden
- The Pros and Cons of Plastic Greenhouses: What You Need to Know
- How to Design and 3D Print a Mashup Model
- How to Start a Hardware Store
- Imperial College London & Microsoft Propose a Cheap and Accessible Method for Upgrading 3D Printers to 5 Axes
- Northern B.C. drone study aims to improve access to healthcare supplies for Indigenous communities
- Everything You Need to Know about Tower Cranes
- Safety And Security Drones Market Size, Trends, Comprehensive Analysis, 2022-2030