3D Printed Lithographic Moon Lamp

After years of being a software developer, [Chris] was excited to get back into embedded development and we’re glad he did. His 3D printed lithographic moon lamp combines a number of hacker and maker skills, and is sure to impress.
3D-printed lithographic moons have gotten pretty popular these days, so he was able to find a suitable model on Thingiverse to start with. Gotta love open-source. Of course, he needed to make a few modifications to fit his end design. Namely, he put a hole at the bottom of the moon, so he could slide the LED and heatsink inside. The 3 watt LED is pretty beefy, so he definitely needed a heat sink to make sure everything stayed cool.
Otherwise, the circuit itself is pretty straightforward. He has an ESP32 to drive the RGB LED through a transistor, and fitted the components onto a custom-designed circuit board to ensure everything stayed neat and organized. You don’t want a ton of loose wires and breadboards cluttering this build. Since he used an ESP32, he was able to create a simple web interface to control the color of the LEDs. Gotta make it connected somehow, right?
What’s great is in addition to the project write-up, [Chris] includes video tutorials, walking the readers through each individual step of the build. By doing so he really makes it easy for readers to follow along and reuse his work. If you’re still looking for ideas, one of these could make a really good Christmas present.
Search
Hot Articles
- Wie man ein Fleischseil binden
- The Pros and Cons of Plastic Greenhouses: What You Need to Know
- How to Start a Hardware Store
- How to Design and 3D Print a Mashup Model
- Imperial College London & Microsoft Propose a Cheap and Accessible Method for Upgrading 3D Printers to 5 Axes
- Northern B.C. drone study aims to improve access to healthcare supplies for Indigenous communities
- Safety And Security Drones Market Size, Trends, Comprehensive Analysis, 2022-2030
- Stigmergy versus behavioral flexibility and planning in honeybee comb construction Stigmergy versus behavioral flexibility and planning in honeybee comb construction